

 API

 Toggle navigation

<dev />

 	Basics
	[bookmark: overview]
 Overview

	
 [bookmark: authentification]
 Authentification - OAuth 2

	
 [bookmark: server-requests]
 Server request

	
 [bookmark: server-responce]
 Server response

	
 [bookmark: error-handling]
 Error handling

	
 [bookmark: resources]
 Resources

	
 [bookmark: aggregated-resources]
 Aggregated Resources

	
 [bookmark: changelog]
 ChangeLog

	API
	

 API Playground

 	 v3
	 v4

	

 API Docs

 	 v3
	 v4

 Overview

 Introduction

 TimeTac provides an easy accessible RESTful application programming interface (API) for developers to connect and integrate a TimeTac account into their own apps.

 The API as well as every TimeTac company account is decoupled from all the other company accounts. Your API access will be restricted to your account only, and no other API user can ever access your companies’ data without your credentials (see chapter “Authentication” for more information).

 Getting Started

 The TimeTac API is not open to the public. In order to get started with the API, you will need to request a private API key that will enable the API for your TimeTac company account and grant you access to your resources. Please contact us at support@timetac.com and tell us about the project you are planning to use our API for, and we will be happy to assist you with an API key and answers to all the questions you might have.

 Once you have your key you will be able to make authenticated requests to our API by calling the URL for a specific resource (see chapter “Resources”). A resource URL will always have the following format:

 Generic API URL

https://go.timetac.com/<company_account>/userapi/<api_version>/<resource>/<action>/

 	<company_account>

 The name of the requested company account. We will only allow requests to your own company account that will be permanently mapped to your API key.
	<api_version>

 If updates to our API would break backward compatibility, we will release a new API version but keep the previous one available to give every developer enough time to adapt their apps to the new changes.
	<resource>

 The name of the requested resource.
	<action>

 The action you want to perform on the specified resource (get/create/update/delete).

 Example

https://go.timetac.com/TimeTacGmbH/userapi/v3/tasks/get/?id=31

 Authentification - OAuth 2

 We are currently only supporting OAuth2 password_grant authentication.

 Request an access token

 Password Grant

 The password grant is a type where you will have to POST both user credentials and client credentials in order to directly receive an access token for the user, without going through the process of requesting a request token or asking for user consent.

 	Request method: POST
	URI: /<account>/auth/oauth2/token
	Header:
 	Content-Type: application/x-www-form-urlencoded

	Parameter:
 	grant_type: The OAuth2 grant type to use – here “password”
	client_id: Your Clients ID on the backend — ask an admin/support.
	client_secret: Your Clients Secret (key/password) — ask an admin/support.
	username: The TimeTac username of the user to authenticate
	password: The password of the TimeTac user to authenticate

 Example HTTP Request:

 POST //auth/oauth2/token HTTP/1.1
Host: go-sandbox.timetac.com (https://go-sandbox.timetac.com/)
Cache-Control: no-cache
Content-Type: application/x-www-form-urlencoded
grant_type=password&username=manager&password=1xxxxxxxxxxxxxxxxxxxxxxxx6&client_id=TT_NATIV

 Example Server Response:

 {
 "access_token": "5256xxxxxxxxxxxxxxxxxxxxxxxx140f",
 "token_type": "bearer",
 "expires_in": 3600,
 "refresh_token": "264fxxxxxxxxxxxxxxxxxxxxxxxx57e8"
}

 You will have to remember both, the access_token as well as the refresh_token, or else you will have to send the user credentials again once the access_token expires.

 Once the access_token is expired, you will no longer have access to the API, and will receive an error response on further requests:

{
 "error_description": "The provided access token is invalid.",
 "error": "invalid_request"
}

 From here on, you will have to either request a new access_token with another password_grant, or “refresh” your access with the previous refresh_token.
 Refresh an access token

 If you have the corresponding refresh_token for an expired access_token, you can request a new acces_token without the need to send the user credentials again.

Request method: POST
URI: //auth/oauth2/token
Header: Content-Type: application/x-www-form-urlencoded
Parameter:
grant_type: The OAuth2 grant type to use – here "refresh_token"
client_id: Your Clients ID on the backend -- ask an admin/support.
client_secret: Your Clients Secret (key/password) -- ask an admin/support.
refresh_token: A valid refresh token

 Example HTTP Request:

{
 "access_token": "7053xxxxxxxxxxxxxxxxxxxxxxxx066c",
 "token_type": "bearer",
 "expires_in": 3600,
 "refresh_token": "fc7dxxxxxxxxxxxxxxxxxxxxxxxxaf61"
}

 You will receive a new token response, with a new access_token and refresh_token to use.

 Example Server Response:

{
 "access_token": "7053xxxxxxxxxxxxxxxxxxxxxxxx066c",
 "token_type": "bearer",
 "expires_in": 3600,
 "refresh_token": "fc7dxxxxxxxxxxxxxxxxxxxxxxxxaf61"
}

 Authorize an API request

 Once you have aquired an access_token, you can use it to authorize an API request. The request itself depends on the resource you want to query and the action you want to perform, but the authorization is always done via the “Authorization” header:

 	Header:
 	Authorization: Bearer <access_token>

 Example HTTP Request:

GET //userapi/v3/user/read/?hr_manager=1&active=1 HTTP/1.1
Host: go-sandbox.timetac.com
Authorization: Bearer 7053xxxxxxxxxxxxxxxxxxxxxxxx066c
Cache-Control: no-cache

 Example Server Response:

{
 "Host": "go-sandbox.timetac.com",
 "Success": true,
 "NumResults": 0,
 "ResourceName": "User",
 "Results": []
}

 Server request

 The request parameters can be sent in 2 different ways:

 1. x-www-form-urlencoded

 Example:

POST /devettpttlmlive/userapi/v3/messages/create/ HTTP/1.1
Host: go-dev.timetac.com
Authorization: Bearer 7053xxxxxxxxxxxxxxxxxxxxxxxx066c
Content-Type: application/x-www-form-urlencoded
Cache-Control: no-cache
Postman-Token: d937270f-6c60-2f15-db73-bb73cce43126

sender_id=1&message=Hello+Max%2C+I+will+be+late+today+so+please+meet+me+at+10%3A00.+Thank+you×tamp=2016-09-27+07%3A00%3A00

 Example (nested entities): timeTrackings - creates 1 timeTracking and 2 checkpointTrackings

POST /devettpttlmlive/userapi/v3/messages/create/ HTTP/1.1
Host: go-dev.timetac.com
Authorization: Bearer 7053xxxxxxxxxxxxxxxxxxxxxxxx066c
Content-Type: application/x-www-form-urlencoded
Cache-Control: no-cache
Postman-Token: d937270f-6c60-2f15-db73-bb73cce43126

start_time=2017-06-13+13%3A28%3A36&task_id=4&user_id=1&start_time_timezone=Europe%2FVienna&end_time=2017-06-22+18%3A05%3A00&end_time_timezone=Europe%2FVienna&nestedEntities=%7B%22checkpointTrackings%22%3A%5B%7B%22checkpoint_id%22%3A%2210%22%2C%22timestamp%22%3A%222017-06-13+13%3A28%3A36%22%2C%22timezone%22%3A%224%22%7D%2C%7B%22checkpoint_id%22%3A%2211%22%2C%22timestamp%22%3A%222017-06-13+13%3A35%3A36%22%2C%22timezone%22%3A%224%22%7D%5D%7D

 2. JSON (Batch request)

 Batch requests are very useful because they provide you with possibility to execute multiple entities with a single API call.

 Batch requests are limited to 100 items per request and this is a hard limit for every user account.

 The current batch limit is there because of both performance and security reasons, and API solutions should be developed with this limit in mind.

 In general, if you are using batch request you should:

 	Implement the "slicer" from your side which will separate your requests to multiples of 100.
	Implement proper error handling mechanisms and models which can examine results of bulk executions.
	Increase response time waiting (timeout config) because batch requests can be slower, depending on what is inside of the batch.

 Example:

POST /devettpttlmlive/userapi/v3/messages/create/ HTTP/1.1
Host: go-dev.timetac.com
Authorization: Bearer 7053xxxxxxxxxxxxxxxxxxxxxxxx066c
Content-Type: application/json
Cache-Control: no-cache
Postman-Token: f10b6a07-d261-4edc-c79f-f85819fe42a5

[
 {
 "message": "Lorem Ipsum",
 "sender_id": 1,
 "receiver_type": "USER",
 "receiver_id": 10
 },
 {
 "message": "Dolor Sit Amet",
 "sender_id": 1,
 "receiver_type": "USER",
 "receiver_id": 11
 },
 {
 "message": "Consectetur Adipiscing Elit",
 "sender_id": 1,
 "receiver_type": "USER",
 "receiver_id": 12
 }
]

 Example (nested entities): timeTrackings - creates 1 timeTracking and 2 checkpointTrackings:

POST /devettpttlmlive/userapi/v3/timeTrackings/create/ HTTP/1.1
Host: go-dev.timetac.com
Authorization: Bearer 7053xxxxxxxxxxxxxxxxxxxxxxxx066c
Content-Type: application/json
Cache-Control: no-cache
Postman-Token: f10b6a07-d261-4edc-c79f-f85819fe42a5

[
 {
 "user_id":10,
 "task_id":4,
 "start_time":"2024-01-13 08:00:00",
 "end_time":"2024-01-13 09:00:00",
 "start_time_timezone":"Europe/Vienna",
 "end_time_timezone":"Europe/Vienna",
 "nestedEntities":{
 "checkpointTrackings":[
 {
 "checkpoint_id":1,
 "timestamp":"2024-01-13 08:20:00",
 "timezone":"Europe/Vienna"
 },
 {
 "checkpoint_id":1,
 "timestamp":"2024-01-13 08:40:00",
 "timezone":"Europe/Vienna"
 }
]
 }
 }
]

 Example projects - creates 1 project with 2 tasks + 1 subproject with 2 tasks + 1 subproject:

POST /devettpttlmlive/userapi/v3/projects/create/ HTTP/1.1
Host: go-dev.timetac.com
Authorization: Bearer 7053xxxxxxxxxxxxxxxxxxxxxxxx066c
Content-Type: application/json
Cache-Control: no-cache
Postman-Token: f10b6a07-d261-4edc-c79f-f85819fe42a5

[
 {
 "mother_id":3,
 "sort_order":50,
 "name":"Marketing New Project",
 "nestedEntities":{
 "tasks":[
 {
 "sort_order":"10",
 "name":"1 of 2 Tasks"
 },
 {
 "sort_order":"11",
 "name":"2 of 2 Tasks"
 }
],
 "projects":[
 {
 "sort_order":"10",
 "name":"1 Project with 2 Nested tasks here",
 "nestedEntities":{
 "projects":[
 {
 "sort_order":"10",
 "name":"1 of 2 Project Nested"
 },
 {
 "sort_order":"11",
 "name":"2 of 2 Project Nested"
 }
]
 }
 },
 {
 "sort_order":"10",
 "name":"1 Project"
 }
]
 }
 }
]

 Server response

 Every request to the TimeTac API will have:

 	a well formed JSON response (default)
	a well formed XML response ("Accept" header set to application/xml, like "Accept: application/xml")

 1. x-www-form-urlencoded

 	Key	Type	Description
	Host	String	The host that processed the request.
	Success	Boolean	False if any error occurred while processing the request.
	SuccessNested	Boolean	True only if Success of this request, and Success of all nested child requests (if any), are true.
	NumResults	Integer	The number of results contained in a successful response.
	NumResultsNested	Integer	The number of results contained in a successful response. NumResults and all NumResults of nested children.
	ResourceName	String	The name of the resource that was requested.
	Results	Array	If the requested action provides a result set and the set is not empty, this array will contain all resource entities as JSON objects.
	Error	Integer	If an error occurred, this will contain the error code so a client can react accordingly (see “Error handling”).
	ErrorMessage	String	A human readable error message that will explain the error. These messages are only available in English.

 Example: JSON response

{
 "Host":"go.timetac.com",
 "Success":true,
 "NumResults":1,
 "ResourceName":"User",
 "Results":[
 {
 "id":"1",
 "internal_user_group":"1",
 "active":"1",
 "hr_manager":"1",
 "department_id":"3",
 "username":"manager",
 "lastname":"Mustermann",
 "firstname":"Max",
 ...
 }
]
}

 Example: XML response

<?xml version="1.0"?>
<response>
 <Host>go-dev.timetac.com</Host>
 <Success>1</Success>
 <NumResults>2</NumResults>
 <ResourceName>user</ResourceName>
 <RequestStartTime>2017-07-18 14:28:41</RequestStartTime>
 <RequestEndTime>2017-07-18 14:28:41</RequestEndTime>
 <ServerTimeZone>Europe/Vienna</ServerTimeZone>
 <Results>
 <id>1</id>
 <internal_user_group>1</internal_user_group>
 <active>1</active>
 <hr_manager>1</hr_manager>
 <department_id>1</department_id>
 <username>manager</username>
 <lastname>Mustermann</lastname>
 <firstname>Erika</firstname>
 </Results>
 <Results>
 <id>10</id>
 <internal_user_group>2</internal_user_group>
 <active>1</active>
 <hr_manager>0</hr_manager>
 <department_id>1</department_id>
 <username>mustermann</username>
 <lastname>Mustermann</lastname>
 <firstname>Max</firstname>
 </Results>
...
</response>

 2. JSON (Batch response)

 	Key	Type	Description
	Host	String	The host that processed the request.
	Success	Boolean	False if any error occurred while processing the request
	NumResults	Integer	The number of results contained in a successful response
	NumErrors	Integer	The number of failed batch processes, if no errors happened the field is not delivered in the response
	isBatch	Integer	If the request was a batch request (multiple parameter sets) its value is set to 1, else the field is not delivered in the response
	ResourceName	String	The name of the resource that was requested.
	Results	Array	If the requested action provides a result set and the set is not empty, this array will contain all resource entities as JSON objects.
	Error	Integer	If an error occurred, this will contain the error code so a client can react accordingly (see “Error handling”).
	ErrorMessage	String	A human readable error message that will explain the error. These messages are only available in English.

 Example: JSON response

{
 "Host":"go-dev.timetac.com",
 "Success":true,
 "NumResults":3,
 "isBatch":1,
 "ResourceName":"messages",
 "Results":[
 {
 "Success":true,
 "NumResults":1,
 "Results":[
 {
 "id":146,
 "sender_id":1,
 "message":"Hello Max, I will be late today so please meet me at 10:00. Thank you",
 "timestamp":"2017-01-27 07:00:00"
 }
]
 },
 {
 "Success":true,
 "NumResults":1,
 "Results":[
 {
 "id":147,
 "sender_id":1,
 "message":"Thanks for the coffee, we appreciate it :)",
 "timestamp":"2017-01-27 07:00:00"
 }
]
 },
 {
 "Success":true,
 "NumResults":1,
 "Results":[
 {
 "id":148,
 "sender_id":1,
 "message":"Who is Max? Max is dead, baby",
 "timestamp":"2017-01-27 07:00:00"
 }
]
 }
]
}

 Example: XML response

<?xml version="1.0"?>
<response>
 <Host>go-dev.timetac.com</Host>
 <Success>1</Success>
 <NumResults>2</NumResults>
 <isBatch>1</isBatch>
 <ResourceName>messages</ResourceName>
 <RequestStartTime>2017-07-18 15:04:50</RequestStartTime>
 <RequestEndTime>2017-07-18 15:04:50</RequestEndTime>
 <ServerTimeZone>Europe/Vienna</ServerTimeZone>
 <Results>
 <Success>1</Success>
 <NumResults>1</NumResults>
 <Results>
 <id>16</id>
 <sender_id>1</sender_id>
 <message>Hello Max, I will be late today so please meet me at 10:00. Thank you</message>
 <receiver_type>ALL</receiver_type>
 <receiver_id />
 <include_sub_department>0</include_sub_department>
 <data_changed>2017-07-18 15:04:50</data_changed>
 <timestamp_update>2017-07-18 15:04:50</timestamp_update>
 <timestamp>2017-01-20 07:00:00</timestamp>
 </Results>
 </Results>
 <Results>
 <Success>1</Success>
 <NumResults>1</NumResults>
 <Results>
 <id>17</id>
 <sender_id>1</sender_id>
 <message>Thanks for the coffee, we appreciate it :)</message>
 <receiver_type>ALL</receiver_type>
 <receiver_id />
 <include_sub_department>0</include_sub_department>
 <data_changed>2017-07-18 15:04:50</data_changed>
 <timestamp_update>2017-07-18 15:04:50</timestamp_update>
 <timestamp>2017-01-20 07:00:00</timestamp>
 </Results>
 </Results>
</response>

 Error handling

 If any error occurred while the request was processed, the “Success” key of the response will be set to false. In that case, two new keys will be included in the response JSON, a error code in “Error” and a human readable description in “ErrorMessage”.

 A client should always at least check the error code in “Error” and try to implement a basic form of error correction if possible. The following table should help with identifying a problem:

 	Key	Description
	400	Server received a bad request. Most of the time this is due to a missing required parameter.
	401	Client tried to access a forbidden resource. This may occur if your account tries to access restricted information or the provided user credentials are wrong.
	403	Server received an unauthenticated request. The client did not implement a HTTP Basic authentication header.
	422	The request parameters described an unprocessable entity, probably because of a parameter had an invalid value.
	500	An internal server error occurred on the backend side.
	503	The service is temporary unavailable. The server is experiencing technical difficulties which prevented it from processing the request.

 Resources

 The following chapters will explain all resources that are available through the TimeTac API and how they should be handled. The API will enable you to create, read, update and delete (CRUD) resources in the TimeTac application, but depending on the resource you are requesting some of these operations may be not available due to security restrictions.

 In almost all cases, you will have to adjust your request method according to the type of action you want to call. The API will respond to the following request methods as defined below:

 	GET

 Read only request, these Requests will never affect the state of a resource.

 	Parameters are expected to be part of the URI query string

	POST

 Creates a new entity of the requested resource. When called multiple times in a row, each request will lead to a completely new entity being created.

 If possible, the created resource will be included in the result of the response.

 	Parameters are expected to be x-www-form-urlencoded

	PUT

 Updates an existing resource. These requests are idempotent, so identical subsequent calls won’t change the result beyond the initial application.

 If possible, the created resource will be included in the result of the response.

 	Parameters are expected to be in the raw body

	DELETE

 Completely removes the specified entity.

 	Parameters are expected to be part of predefined URI segments

 For each resource, you will find a table with all the parameters that are supported, alongside with their description, datatype and availability for the different actions:

 	Name	Type	Description	C(reate)	R(ead)	U(pdate)
	Name/key of the parameter	
 	Integer
	Whole numbersChar
	A single character.String
	If not stated otherwise, all unicode characters.Boolean
	Either “1” or “0”
	Decimal

 If not stated otherwise, 10 digits to the left, and 2 digits to the right of the decimal point.
	Date

 Values in “YYYY-MM-DD” format.
	DateTime

 Values in “YYYY-MM-DD HH:MM:SS” format

 	Short explanation	
 	“-“ Not supported
	“O” Optional
	“R” Required

 The following parameters are available for all resources:

 	Name	Type	Description	C	R	U
	_limit	Integer	Limits the amount entries in the result.

 Default value: 100	–	O	–
	_offset	Integer	If there are more results than can be displayed in one response (> limit), offset will skip this many entries and returns the next page of the resultset.	–	O	–
	_order_by	String	Any of the supported parameters name. This will sort the resultset by the specified field in alphanumerical order.	–	O	–
	_order_desc	Boolean	If set to “1”, the resultset will be sorted in reversed alphanumerical order.	–	O	–
	_op__<fieldname>	String	If specified, the search will use the given operand instead of comparing for equality. Supported operands are:
 	eq
	Equal (=), default
	gt
	Greater than (>)
	gteq
	Greater than or equal (>=)
	lt
	Less than (<)
	lteq
	Less than or equal (<=)
	in
	Pipe separated list of values to check against. E.g.: _op__id=in&id=1|2|3
	betw
	Filter results to range between two pipe separated values.

	first|second is evaluated as first <= result <= second.
	E.g.: _op__timestamp=betw×tamp=2017-01-16 00:00:00|2017-02-05 10:58:00
	like
	Checks if the given value if part of the actual field value.

 			
	_aggregate__<columnname>=sum	String	Supported funtions are:

 	“sum”: sum
	“avg”: average
	“max”: maximum
	“min”: minimum
	“count”: count
	“group_concat”: E.g.: _aggregate__columnName=group_concat

 			

 Relation Resolution

 Resources can now configure relations in their scheme, which can then be resolved on demand into a display object (= JSON object with only public fields). A client can request to resolve a relation with the “_resolve” meta parameter, by specifying a comma seperated list of fields to resolve. Resolveable fields will be specified in the API documentation for each resource.

 	Resource: user/read/
	Relation: “department_id” can be resolved into a “department” display object
	Parameter: ?_resolve=department_id
	Result: Response will contain the department_id as usual, but in addition, it will append a key “department” with a JSON object as its value

 Aggregated Resources

 We are now supporting aggregated resources, which are basically only endpoints that can handle multiple existing resources at once.

 Inclusion/Exclusion

 Aggregated resources can have a set of whitelisted resources to choose from, a default set of activated resources returned, or both. In either way, the client can include or exclude permitted resources from the response by specifying a list of comma seperated resourcenames:

 Inclusion

Parameter: _include
Example: ?_include=user,department
Effect: Will return only the specified resources in the response

 Exclusion

Normal resource parameter: ?id=5&_op__id=lt
Aggregated resource parameter: ?user__id=5&user___op__id=lt

 Resource Parameter

 An aggregated resource has no resource parameter on its own, instead it allows for prefixed parameters for each individual resource. So in order to filter an individual resource, you will have to prefix the usual parameter with a “<resourcename>__” string. Keep in mind that the resourcename has to be seperated by two underscores from the parameter, that means that meta parameters which are also prefixed by an underscore lead to three subsequent underscores, this is intended!

 Filter user by id less than 5

Normal resource parameter: ?id=5&_op__id=lt
Aggregated resource parameter: ?user__id=5&user___op__id=lt

 As you can see with the “_op__” parameter, meta parameter can also be prefixed and therefore limited to a specific resource. Other than resource parameter they are permitted to be specified without a prefix though, which will lead to them being passed on to all resources.

 Delta Parameter

 The meta parameter “_since” takes a serialized datetime as parameter.
 It limits the results to entries that have been created or updated at or after
 that datetime value. "_since" is available on every resource that tracks the latest change to an entry. If specified, the resource will map the provided since parameter to the resource specific “ON UPDATE CURRENT_TIMESTAMP” field, but the resource can provide a different implementation for the “_since” logic if necessary.

 Example

Get all entries that were modified since the beginning of 2020
?_since=2020-01-01 00:00:00

 In order to additionally obtain all elements deleted after "_since",
 "_fetch_deleted=1" can be added to the query. An array containing all
 that elements that have been deleted will be included to the response
 using the "Deleted" key.

 Example

Get all entries that were created, deleted or modified since the beginning of 2020
?_since=2020-01-01 00:00:00&_fetch_deleted=1

 The response will include the deleted elements. For example:

{
"Results": [...],
"Deleted": [
 {
 "id": "372576",
 "deleted_at": "2020-10-05 15:27:40"
 },
 {
 "id": "401087",
 "deleted_at": "2020-11-16 13:15:56"
 },
 ...]
}

 If no elements have been deleted, the array with the key "Deleted" will be empty.

 Aggregated resources List (Delta sync)

 	user
	department
	skills
	messages
	notifications
	projects
	tasks
	generalSettings
	timePlannings
	holidayRequests
	teams
	nodesToUsers
	absenceDays
	timesheetAccountings
	timesheetActionLogs
	timestampChangelogs
	nfcTransponder
	timetrackings
	timeTrackings
	multiuserToTasks
	clients
	translations
	checkpoints
	checkpointTranslations
	checkpointTrackings
	permissions
	absences
	absenceTypes
	absenceBans
	permissionResolveUsers
	permissionResolveAbsenceTypes
	permissionResolveQuestions
	permissionResolveDepartments
	serverTime
	timesheetAccountingSummaries
	userStatusOverview
	changeTimeTrackingRequests
	notificationUrls
	notificationsTypeHtml

 Version 2.0

 Copyright © TimeTac GmbH

